Large-scale comparison of intron positions in mammalian genes shows intron loss but no gain.

نویسندگان

  • Scott W Roy
  • Alexei Fedorov
  • Walter Gilbert
چکیده

We compared intron-exon structures in 1,560 human-mouse orthologs and 360 mouse-rat orthologs. The origin of differences in intron positions between species was inferred by comparison with an outgroup, Fugu for human-mouse and human for mouse-rat. Among 10,020 intron positions in the human-mouse comparison, we found unequivocal evidence for five independent intron losses in the mouse lineage but no evidence for intron loss in humans or for intron gain in either lineage. Among 1,459 positions in rat-mouse comparisons, we found evidence for one loss in rat but neither loss in mouse nor gain in either lineage. In each case, the intron losses were exact, without change in the surrounding coding sequence, and involved introns that are extremely short, with an average of 200 bp, an order of magnitude shorter than the mammalian average. These results favor a model whereby introns are lost through gene conversion with intronless copies of the gene. In addition, the finding of widespread conservation of intron-exon structure, even over large evolutionary distances, suggests that comparative methods employing information about gene structures should be very successful in correctly predicting exon boundaries in genomic sequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for Extensive Recent Intron Transposition in Closely Related Fungi

Though spliceosomal introns are a major structural component of most eukaryotic genes and intron density varies by more than three orders of magnitude among eukaryotes [1-3], the origins of introns are poorly understood, and only a few cases of unambiguous intron gain are known [4-8]. We utilized population genomic comparisons of three closely related fungi to identify crucial transitory phases...

متن کامل

Analysis of evolution of exon-intron structure of eukaryotic genes

The availability of multiple, complete eukaryotic genome sequences allows one to address many fundamental evolutionary questions on genome scale. One such important, long-standing problem is evolution of exon-intron structure of eukaryotic genes. Analysis of orthologous genes from completely sequenced genomes revealed numerous shared intron positions in orthologous genes from animals and plants...

متن کامل

Phylogenetic Distribution of Intron Positions in Alpha-Amylase Genes of Bilateria Suggests Numerous Gains and Losses

Most eukaryotes have at least some genes interrupted by introns. While it is well accepted that introns were already present at moderate density in the last eukaryote common ancestor, the conspicuous diversity of intron density among genomes suggests a complex evolutionary history, with marked differences between phyla. The question of the rates of intron gains and loss in the course of evoluti...

متن کامل

Investigation of loss and gain of introns in the compact genomes of pufferfishes (Fugu and Tetraodon).

We have investigated intron evolution in the compact genomes of 2 closely related species of pufferfishes, Fugu rubripes and Tetraodon nigroviridis, that diverged about 32 million years ago (MYA). Analysis of 148,028 aligned intron positions in 13,547 gene pairs using human as an outgroup identified 57 and 24 intron losses in Tetraodon and fugu lineages, respectively, and no gain in either line...

متن کامل

Intron loss and gain during evolution of the catalase gene family in angiosperms.

Angiosperms (flowering plants), including both monocots and dicots, contain small catalase gene families. In the dicot, Arabidopsis thaliana, two catalase (CAT) genes, CAT1 and CAT3, are tightly linked on chromosome 1 and a third, CAT2, which is more similar to CAT1 than to CAT3, is unlinked on chromosome 4. Comparison of positions and numbers of introns among 13 angiosperm catalase genomic seq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 12  شماره 

صفحات  -

تاریخ انتشار 2003